本站公告:
当前位置:工程案例

关于音响、录像的电源质量与接地问题

来源:  作者:
 

 

    使用全新的数字电器设备必须丢弃以前各种各样的接地、偶合、屏蔽方法。

    时代在变化,我们的电器产品也在变化,模拟电源、电子电路和电源功放领域正逐渐让位于数字转换和逻辑设计等新领域。灯光控制领域中,这一变化业已完成。尽管我们中已有不少人注意到了这一进步,但是,我们使用原来的模拟电子产品时,会伴随有AC电源连接,接地及影音系统连接等问题,当我们使用操作性能更稳定的全新数字电器产品时,与之相关的这些因素又有怎样的变化呢?

    首先我们来看,模拟电路元件是用来放大和组合新的电子信号的,所以模拟音频前级放大器和混频器就是用电势计来直接改变输入到电路元件上的信号电平。电势计有旋转型和滑动型两种,时间久了就会产生噪音。全新数字电路的控制类型相同,但有一点不同,即:他们可以改变集成电路的通信增益是根据电势计电阻从交流到直流转换过程产生的数字二进制值逐步改变的。噪音在转换过程中以被过滤掉。

    有些用于混频和增益的控制器以不再使用电位器,现在从光学的磁性角度来说,他们都偶合了数字编码器,其旋钮的旋转或扳手的滑位直接转化数字脉冲,即二进制数码,然后我们就有了灯光控制系统、音视频混频器和类似电路产品,如通过数字连接的手提式或台式PC机系统,尽管性能更好的纤维光导连路越来越稳固,但平衡连路通常被受欢迎,如RS-232型或RS-422型,无线电系统也同时并存并同样使用控制和信号连路,只是仍用线材缠绕起来,以获取与连路的电器里的信号。这些电器的有线部分会使用数字型信号或其他专利信号。

    一旦我们说起实际控制,即新型数字电器产品处理音、视频信号时,我们就发现,这些信号全都是数字式的,用震荡器再也看不到相位转换、幅度变化的交流电波形、直流电定位正弦、模拟波形信号。现在他们是一串串的方形波、脉冲宽度调协式(PWM)或代表全数字控制的若干已编码的二进制数字、音视频信号等。经常在PC机上使用音、视频光碟的人都熟悉这个,因为只有模拟信号才能与话筒或音箱相连。

    即使研究一下交、直流电源,我们现在也只能找到两处使用直流电(输入过滤电容和逻辑或应用电压输出总接头);其他的电路都控制一、两种方形波。一万赫以内的频率和PWN电路在电源内布进行会合。相反,模拟电路电源在发电过程中只有50Hz-60Hz的交流电输入到整流器上,其他地方或者可能发现脉动120Hz直流电或一些"纯"电平的直流电。旧式线性电源(模拟或线性设计)的结构原理;新式开关型电源(SMPS),两者区别很大。

    电源功放可能是数字改革后仅剩的一种应用。一般而言,其输出最终会反馈到模拟传感器(也叫扬声器)上,而模拟信号出现于功放中则又是另一回事。在功率放大器上,数字电路在各方面都超出了最后输出点,甚至使用数字电源放大电路和特殊过滤来消除高频元件(如载波器)。然后用过滤器帮助冲建视频波段信号作好模拟电压和电流。

    在模拟电器领域中,我们尤其喜欢颇有口碑的单点接地(SPG)系统和静地面接地电极,通常具有1的神秘特性,只需连接到电器上。这一应用一直保留着250个产品中有一个NEC损坏--接地。从此前提发出的所有地面接地都要求防火、防震、防电,通过使用屏蔽接地避雷针可以解决这个问题,从电子学上讲与其他的电极一样。建筑电子系统的(安全)电器接地导体(EGC)系统,包括金属电缆管道、金属电器箱体和电源线上著名的绿线。

    现在的情况完全变了,因为现代的模拟及数字电器中使用的建议接地设计,接受交流电源系统的电源接地绿线法连接,忽略了所有型号的特殊连接。例如:我们在房间里架好了电器,这些电器都用信号电平缆线接好了,并使用信号参考支架(SRG)以保证具有带宽接地功能,而普通型号的噪音在相互连接的单元中以被衰减。下面还将讲述许多关于SRG的内容。

    全新数字电器明显与众不同,且一点不受模拟电器困扰我们的问题所影响。但我们中已有人发现了与数字电器有关的新问题亟待解决。我们现在应该去注意新出现的重要规则,尤其是针对全新数字电器的,这些一般也用于模拟电器,例如:有些电器接地规则以做了重要修正。我们还将看到,有一些具有影响力的缆线屏蔽规则,除非是视而不见,否则闪电和电子保护要求都已出现,就是不被理解,比我们使用的电子承载电器更重要,尤其是对数字电器。

    有了这些了解之后,让我们开始探索数字视听器材这一新领域,及其与建议交流电源、接地和视听缆线系统的关系。

    电源质量与性能问题

    在应用上,计算机系统显示数值(1或0)的逻辑电路和视听电器的数字电路几乎没有差别,因此,在计算机领域成功开发的众多信息直接适用于压缩机运做的电器中。(别忘了这是以计算机电器为出发点)。当我们研究CBEMA曲线时,这一点就可以得到证明。

    CBEMA代表旧式框架形计算机生产商协会。该曲线是由CBEMA的功率界面协会为第三号(SC-3)开发的,可用来确定交流电源质量和各种数字逻辑电器之间的关系。

    X轴表示时间及标准美国60Hz电源线频率每秒钟运行的圈数。Y轴表示电压的+/-参数。Y轴上的参数百分之百等于所选额定rms交流电电压。例如:120伏交流电在百分之百那一行;当电压上升时,曲线会沿Y轴上升(标注两倍、三倍等交流电额定电压的增量,直至百分之百)。当缆线电压下降时,曲线会顺着Y轴降至0点,整个电源消失。对数的X轴决定了被跟踪情况的持续性,例如:如果交流电源轴线降至0度,电压达一分钟时;然后数字心又恢复成百分之百曲线。当然,这可以推断:电压可恢复到120V交流电,即百分之百曲线。若不能恢复,曲线需要恢复到他最后的电平状态。

    瞬间低压或倾斜现象

    最常出现的电源质量问题之一叫倾斜。倾斜情况有好几种不同的说法,如下降、俯冲等,但根据IEEE的《绿宝手册》规定"倾斜"一词以广为接受。其额定电压存在于倾斜发生之前或之后,因为倾斜会导致有效电压明显地下降一圈或好几圈。

    常见的情况是由突然应用有较高的瞬间开始或流入电流的系统或承载电路引起的。这种常见的承载由整块面板、马达、大常见整流器及交直流电源表示,其中交、直流电源有个大值输入电容器,通过整流器直接插过曲线。用一个大而空的电容器,大型充电电流能够因此而存在于第一个半圈,但在随后的半圈里会逐渐减少,直到电容器再充上电压。

    瞬间高压或膨胀现象

    如所期望的一样,膨胀是与倾斜相反的情况。膨胀也被称为涌压,但这个词不太正确,因为"涌"更适合用于持续更短的情况,包括瞬间高压,如闪电产生的电压。膨胀这个术语现在也被IEEE正式收录,表示上述发生的情况对膨胀正确的认识,其中额定电压存在于膨胀发生之前或之后,会导致明显地有效电压上升一圈或好几圈。

    常见的膨胀情况常常是由取消电子系统或有较高流动电流8t大型承载电路而引起的。这种承载是由面板、马达、整流器和大型的'不与一个电源关闭控制同时相连的交、直流电源所表示的。

    脉冲电压现象

    常见的脉冲现象有许多名字,如假信号、尖峰信号、刻痕、螺状触须、过渡脉冲等。其特点是极性辅助循环,或是频段辅助循环。正是这唯一特性但却会使脉冲成群出现,也许与某个原因有关,也许与之没有关。脉冲与交流电曲线的电压或电流要么同步,要么异步。脉冲将在C8EMA曲线中出现在左边8.33毫秒处,和辅助循环区,脉冲会全部保留在10004曲线之上或之下,也会部分保留在该曲线之上或之下。这也许有衰减的震荡特性。快速过渡时间与脉3中紧密相连,但其衔接除了AG电源系统基本频率的变化比例之外一点也不明显。总而言之、脉冲总是有个过渡时间,在AC电路上用毫秒或微秒表示。当脉冲源十分接近测量点时,过渡时间会加快,这是因为AC电路在高频时间是有损耗的发射曲线,倾向于随着距离的增加而衰减HF信号。

    震荡电压衰变现象

    脉冲衰变可能会与衰减震荡电流或电压波形有关,依靠它最初是怎样启动的,多是怎样通过干涉AC电源系统接线发射出去的。注意:所涉及的AC电源系统包括有电抗,而且就是LC电路,在基础频率或和谐的相关频率时甚至会产生共振。因此,震荡现象在这个电路上很常见。这些震荡分频度根据LC电路上涉及的有线系统的Q值的不同或其它损失的不同而不同。一般情况下,只有少数的甚高频脉冲衰减重覆能被看到,因为它在AG电源电路的指数式中很快会被分频掉。超低频衰减震荡分频时会延续稍长点,通过更长的有线路径可以传播出去。

    AC电源线上常驻见的衰减震荡现象可在CBEMA曲线上8.33毫秒左边及在辅助循环干扰区内可以看到。但有时候,也并非如此,8.33毫秒线会与震荡波形的波形的尾部相交。震荡一般运动在100%电压线之上或之下,但有时候会出现DC偏极现象,并徘徊在该线上下。有一个好例子,即:AC电源系统衰减震荡现象是由一排排电源因素电容器打开到"进口"(有时为"出口")而产生的。这些现象职有能量,又包含有许多低频内容。这些因素结合起来会使干扰引出去,而在电子补给系统进入设备及电器之前过好几英里英里的距离之后没有大幅衰减。装有开关的

    一串电源因素电容器的常见电路简图。这里的一般规则是:电容器bank离所影的子设备越近,潜在干就会越大,反之亦然。

    多数电源校正电容器banks安装在三相干扰电路上,用于电子补给系统本身,在设备的主进给装置系统内,或两个位置都有。两种情况下,不需要的效果极易达到建筑的辅助进给装置及分支电路系统中,并到达连接的电子承载设备。电容器怎样引起衰减震荡现象?当一套放电电容器直接在高峰由压附近连在AC线上时就会引起部分问题。另一种方式,充电电容器可在曲线电压大大低于电容器电压时连接到AC线上即可产生。

    在第一种情况下,电容器从AC线上获得许多电流。由于上流电源电路阻抗之缘故,电容器会令电压产生暂时突降现象,通过顺流载荷看上去象是无准备的电压下降01E第二种下,电容器给AC线加了压。这个加压会在线路导体上引起不需要的电压从电容地连接点瞬时双向突增。尽管这个上升看上去像是双向瞬时突增,但它的实际增向是荷载向。当用于连接三个电容器bank的机械联系没有同步联系次数时,又会产生另一问题,即导前致两个电容器先被连接上,直接结果是在两个相关的电源系统导体上产生特殊干扰。伴随这一干扰的还有普通干扰。

    这两种情况的任意一种,包括电容器和AC线的LG产品都会产生震荡条件直到电容器的充电变得与线路电压频率同步。作为与线路相连的简单电抗载荷,由于阻抗的缘故,电容器产生有倾向性的电源因素校正影响。

    通讯障碍

    经常可以见到AC线上的电压波形,它们与从波形上去除的一、二障碍同时存在。任何地方都会产生这种障碍,且是按时间顷序从开始时间一直持续下去。它们被称为通讯障碍,一般是由瞬间的短路引起的,己控制的整流器会在一个打开而另一个被关闭之间位于AC线的中间。有了SCR,即相位转换开关后,易看到障碍沿著X轴波动,它们一般位于GBEMA曲线上和辅助循环区的8.33毫秒线的左边。

    电波上的若干零十字

    在电容器的衰减震荡现象中,零度电压曲线会与该现象的震荡部分或和谐电压有若干交叉点。如果在深层障碍边缘存在震荡,并与零度电压线相交时也会发生这种现象。在这两种情况中,结果都会产生多个电压零十字,对任何依靠60Hz曲线电压的零十字点进行计时或SCR整流的电器产品都会产生严重影响。有些SGR的灯光控制系统会受到此类问题的严重影响。如果依靠电压波形计算零十字的数字表或计时器在60Hz电路上每180度会得到不止一个电压零十字时,速度就会加快!

    和谐电压波形失真

    利用非线性承载,如各种整流器电源(线性和SMPS),电流在相关的频率中从120伏交流电源线流到60HZ。一般而言,所有电流都是以脉;中形式在90度到270度之间运行,以避免沿著所给电压波形线性流动。常见的用于SMPS的输入电流波型。该波形包括一个高峰电流,在受其影响的电路上,有大幅度电压降、穿过AC电源电路的阻抗包括接线,电源变压器阻抗、震荡器绕阻或其他AG电源的内部阻抗。出于考虑和兴所趣所致,上述阻抗可由用于暂时AC电源系统的灵活的电源线设备大量提供。如果长分支电路同扩展电线连起来运用的话,则又是一个新发现!在非线性载荷和AC电源之间,放置一个电源调制设备,如电线电压调制器,有时会使情况更糟,因为常用的电源调制设备通常有许多内电阻,而内电阻会直接增加电压波形的失真问题。常见的非线性承载,如与120伏交流电相连的SMPS就要求基本频率电流与和谐电流两者都达到第19(19HZx60HZ或1,140H2)o多数情况下,电流来自奇数谐波中(3,5,7,9..….),而且是由低到高顺序(特别是第三、第五、第七谐波)。

    一旦非线性承载(如整流器)需要从AC电源电路中获得和谐电流,就会出现电压下降,并在系列连路中穿过各种阻抗。这样,如果所给数量的第三谐波电流在上流电路中下降10伏,则这种情况会被认为是从10伏180Hz用数学方法增加到120伏肋Hz基波电压。从这种现象中观察到的电压波形会出现高峰和低谷,或称为驼峰电压,这取决于人们是怎样描述该失真现象的。与AMP的基波电流的60HZ频率相比,电流通路中1A180Hz(第三谐波)的电感电阻(XL=2fL)总量会使电压下降3倍,这个关系也适用于更高层次的谐波电流系统,因为电感电阻是随著频率的增加而按比例增加的。

    注意:和谐的失真电压波形所拥有的总面积没有不失真的正弦波所拥有的总面积多,而且其高峰电压也更低。这对于相连的线性电源来说,问题比SMPS的设计更多。前者损失了固定空间,越运行越热,因为作为低压现象,在输出时,相连的线性电源会做出相应的反应。而SMPS有较多的可利用空间,以后会为90度、—270度的主能量存储电容器简单地用一个更高的高峰充电电流来补偿。有了足够的失真,两个电源最终都会失去固定空间,但线性电源总是先行,而且稍多点。

    一项重要建议:如果想在没有携带正弦波形的AC电源导体上测量电压或电流,那么只能使用真正有效的仪器。常见的模拟或数字电流或V表并非真正的有效仪器,但是一般的测量仪(有效校准设备)。换而言之,正是全波整流的DC仪器才标有到度,可在纯正弦波上精确到有效的O.707值。在谐波典型的失真波形上,这种仪器读不出曲线下部地区的精确值,其读数结果会误差50%左右。换而言之,在这样的仪器上,20A的有效电流可能会被读做10A左右的值。这样会令使用者误以为:电路没有严重载荷。电压波形上会发生同样的问题,使用者会误以为:AC线电压太低,需要提高,当然包括电压和电流的计算,这种情况也有弄错的时候。

    常见SMPS和线性电源上的倾斜影响

    研究CBEMA曲线的另一种方式是确认在丫轴上和8.33毫秒点左边区域100%线以下的面积,把它作为缺少优质能量储备的地区。在常见的SMPS输入中,过滤电容器发生了作用。在设计良好的SMPS单元中,这是相对较大的电容器,来自全波桥式整流器,直接穿过AC线输入。这个电容器已充满了电,几乎达到AC线的高峰线路电压(169伏直流电,在120伏交流电线上),并能储存大量电能(Q=CE),可在电源中通过提取,比在SMPS中用逻辑电压固定电路更优越些。因此,这就象个飞轮,一旦发动机启动,机器就会一直运转下去。但是,劣质的SMPS电源或良于的但却过分承载的电源都容易缺少存储能量,在主输入电容器上,一旦AC线电压下降就必须为倾斜现象的持续提供再充电电流。在SMPS中,该点被描述为:当用于SMPS输出的全波整流器上时,高峰AC或者小于那个半环上的电流的电压电平。因为线性AC—DC电源操作来自输入下降变压器上的低压状态下的所有过滤电容器。电容器所充的电压与线性电压调整器持续工作所充的电压两者差别不大。人们把这个差别称为“空间”。这两种设计之间没有什么对比——所以这场竞赛持续了下来,且SMPS成了赢家。

    由于Q=CE,所以对于同样尺寸的电容器来说,120伏AC线在17幅峰电压时的有效存储能量的总量要比25伏AC辅助变压器40高峰电压时的存储能量大得多。而且,想一下,除了在240伏AC输入时能可以操做之外,和120伏AC输入单元相同的SMPS中又能储存多少能量呢?再说地SMPS中,电容器还直接连在整流器的输入上!有了线性设计,二者就没有区别了,因为降压变压器的辅助电压也不会改变,只有基础电压会变;因此结果就是空间没有改变。

    在模拟电源的DC输入和同样输出比率的SMPS上。线性电压倾斜与SMPS的联系甚少,对比一下它们相同的电源输出比率和线性AC—DC电源即可明了。数码差异与输出比率相同的线性电源相比,性能更好,价格更低,音量更小,SMPS重量更轻。只有当线性电源与其所支持的商品相比,供应不足,成本更高,体积和重量都变大时,才能与它们相竞争!

    多数AC电源研究(IBM、Bell等)己确认了AC线电压倾斜现象,这己不足为怪,而且电子、计算机使用者根据经验都把它作为最平常的电源质量问题。尽管忽略了如倾斜现象这样的AC线电源问题之后,人们都认为SMPS数码电器要比模拟电器好,但是仍有一点点倾斜现象会导致性能故障。

    常见SMPS与线性电源的膨胀效果

    膨胀是向SMPS输入时产生的,其结果可预见为:它尽全力结全波整流器充实电后,再给输入能量储存电容器充电。在普通的SMPS中,这是个相当大的数目,所以这个努力并不象看上去的那么容易。此处包含一个RLC连续时间,它不仅包括电容器,还包括膨胀到达的整个上流有线系统的电抗和电阻。所以,很难充满电容器;相反,它只是引入现有的、并把它储存以备后用。如果这能产生比线性高峰更高的电压,那么电容器就不会简单地在下一个半圈上接受任何新电荷,直到一些SMPS插入载荷之后的半圈已经把电容器的电压消耗到低于AC线高峰电压以下之后才开始接收新电荷。

    SMPS电源的变压器是高频(一般为几万赫)开关电路,涉及到关闭与饱和设备的交替,其能量来自主输入能量存储电容器。辅助变压转换器是全波整流,用于给辅助能量存储电容器在接近连接载荷使用的电压处充电。通过脉冲宽规定的变压器(控制其工作循环),我们可以在这个电容器上控制充电电平。

    即使主输入能量存储电容器在穿过终端时可能有大量电压变化,最终在变压器服务的辅助能量存储电容器上也会得到一个稳定的电压G注意/不论何时穿过辅助能量存储电容器,出现电压太大时,变压器都会’被脉冲宽带规定电路临时切断。这就是在SMPS的某些部位设置了自动保护措施,避免输入线到达载荷而产生超压干扰,效果很好。

    使用线性电源时,膨胀会使输入转换器的低压辅助主能量存储电容器充电过多,而由它供电的线性电压调节器电路又不能承受过量电压,所以就会对服务载荷失去调节功能,结果电源输出的DC电压太多,不能扰乱或破坏相连的载荷。另外一点,调节电路本身会受损。DC电平消弧电路有时是唯一能保护它避免出现这类问题的方法,但这不是—个好方法,特别是它不会自动调节,而需要由电磁干扰来触发。

    其它影响

    因为几乎各种脉冲和震荡现象包含的频率元件都比经常出现的倾斜或膨胀的频率高,所以它们可以影响由EMI效果而产生的附加电源。

    经常出现的问题均涉及到AC线已扩展的电子干扰,一般包括提供不需要的输出、输入(和与之相连的较高的电平电路)藕合电源设计。当涉及高达几万或几千赫的频率,而少量散逸电抗又能形成重要电路间的藕合时,上述情况尤为真实。电源内的一般问题涉及的是安装点,与e-field相反,因为电流相对较高,电路阻抗和电压又相对较低,这样,多数问题都涉及散射磁场及有线装置和PC板扫描点的路线等方面。

    关于EMI抗扰度问题,SMPS的成功经验已广为人知,因为在其电路中它就是丰富的EMI发电机。这样,SMPS必须据EMl和电磁兼容点进行良好设计,否则,它不会起作用,或者对它正在使用的电器设备产生干扰,使它免于自己中毒,具有抗外用EMI的理想效果,如在与之相连的AC电源线上。这种情况与常见的线性电源不一样,常见的线性电源本身是很安静的,通常不是按EMI抗点来设计的。

现举例来说明。经常是:某项电路设备内拥有线性电源,而它同时又受到AC线EMl问题的影响,所以把与载荷兼容的一可切断电源(UPS)置于载荷和受损AC线之间。这种变化一般是能够解决问题的,但它又是怎样解决的呢?

    其实很简单。就是在“受害”电路中把SMPS放在AG电线和线性电源之间。而且除了UPS之外,AC电源UPS和电器中的电器中的SMPS之间真正差异是高电源,而没有整流过的变压器输出给载荷提供的是60HZ电源而非DC电源。UPS电池和SMPS主输入能量存储电容器之间的相同之处显而易见,此处不再赘述。

    减缓问题

    ★选择Ac电源:电器产品要使用恰当的AC电源,这不仅仅是指把插头插进离电器最近的墙壁插座即可,还包括避免犯工业中的常规错误,即试图为设备取得特别的或专用的AC电源。因此获得恰当的AC电源的任务就从AC电源本身开始。

    ★逆流而上:听众最好的建议,那就是一AC电源为起点,或逆流而上,接近建筑的电器服务(SEQ)较为实际。这是指专用的SEQ进给装置连接到房间中的电器设备上,而在这房间里,它是通过独立转换器(IT)或另一个合适的电源设备藕合到一个或者多个面板上。

    这种设计原理极为简单。不论在建筑内的什么地方使用AC电源,不论什么影响了SEQ,都会同样影响建筑内各级电平的电源分配。例如:即使SEQ上出现了瞬间低压(倾斜)现象,都能在建筑内的各个电器插头上发现。然而,如果有人在分配系统中一个很远的插头上逆向获得了电源,那么任何影响进给装置或所选插头与SEQ之间的面板的东西都会影响选用的辅助插头的电源质量。经过严密的数字计算得知:电源质量在SEQ时表现最好,但经过分配系统时变得越来越糟,而且建筑本身的载荷也会出现问题。

    ★取用低阻抗电源:所有电源均有内部阻抗,例如:它会限制短路电流穿过电河或转换器的终端。因此内部阻抗既是不可避免的,却又具有实用性,除非是因为没有考虑到而会陷入麻烦之中。

    常用的电器载荷设备电源包括整流器输入。这些输入要求每个半圆上都有非正弦的高峰电流,以使电压穿过电源内部电阻时能大幅度下降,并引起电源中有效电压波形的谐调失真,这样产生的谐调失真的电压波形会给普通电器载荷设备的操作引出无数麻烦。

    电源电路上的谐波很强,通常能够进入电话及电器设备的信号电平电路中,并引出许多故障。例如:AC电源系统上的简单电压波形谐波很严重,因为它们也会引起相关的AC电源连线去引发宽带音频频率去干扰附近的周制或信号缆线。又如:对简单的AC—DC电源的干扰会覆盖60HZ到2KHZ。在电压波形上较高频到痕出现的地方。有效谐波能向上扩展至几十甚至几百千赫处,可以另外影响视频或数字转换过程。

    谐波电压被降到一个合理的水平上后能保证:所选AC电源内部应有一定的低阻抗。对于常见的服务转换器(ST)来说,这一校正己不成问题,但它却变成了建筑内电器的干型转换器或其它型号的电源调节器,并从中获得电源。这里推荐一种方法、即建立比载荷所要求的KVA能力更大的AC电源,其内部电阻在2.5%--5%范围就能避免许多类问题。注意:多数电压调节器和UPS的各种电源虽不能达到上述内电阻的要求,但有时还是很实用。这就要求确定:所选的调节器或UPS必须有内输出电压反馈电路,它能看到输出电压波形,并将错误校正信号反馈进控制电路中,该信号会使输出波形失真和有效值电压电平保持在相同控制之下。这种情况下可以用有源方法来补偿内部高阻抗。

    如果电源调节器设备没有良好的输出电压波形控制,那么对于输出电压波形的失真来说,情况要比建筑内电源系统直接供电严重得多。有时这种问题会很严重,以致于当电子载荷设备与电源调节单元相连时不能正常运行,但与建筑电源相连时却可能正常运行。在商业贸易中,这被认为是昂贵的教训。

    电子荷载的NEc接线方式

    从历史角度来说,在与给电子载荷电器供电的AC电源分支电路相连时,NEC不要求太灵活,一般只有两种方法:固定接地(SG)和隔离或绝缘接地(IG)。经常给设备供电的AC系统只能用固定接地法。(这意味著把电源转换器的中性电极黏接到设备接地绝缘系统上,把最近的NEC接地地极接到2,150伏交流电的AC系统的转换器上。参见250—5和250。25部分)。尽管从设备性能角度来说,这是个好方法,如在常用的电器设备安装中可以降低嗡呜等噪音问题,但它却禁止用在分支电路上。产品安全检测和列表服务(如UL)都非常清楚,即检测的各种电器设备及其安全标准都必须符合NEC03(1996版)的要求。

    Ac系统和分枝电路接地

    传统的两种AC系统及分支电路的接地法(SG设计)和(IG设计)所示,其中分支电路是在噪音及嗡鸣状况下用来支持常用的电器载荷安装设备的。1996年NEC的新版之前,只有这两种设计方式。两种接地方式都有双重性。首先:在常用的120伏有效值分支电路中,热线应在最高电压为170伏的电位中接地。其次:由于接地导体系体中存在普通噪声电流不等的共模(CM)噪声电流会出现在分支电路的中性或热性导体上。这个不等的电流随后会在接向载荷(热性或中性导体)的AC电源线上转化成简正电流。

    第一种情况表示:电子场位置很高,距离热性导体最近,与任何接地物均有关,如安装在电源线附近的音频缆线的屏蔽。该高电子场最大限度地藕合AC电源线和接地屏蔽,这样会把嗡鸣及噪音带入到音频缆线中。这一点对于高阻抗电路来说尤为重要,因为他们是由电压驱动的。注意:如果AC接线上有效的接地电压下降的话,从电子场进入附近的信号电平导体的藕合干扰量也会下降。因为电子场属于近场现象,它与电压成正比,又会随著相关导体间距离的扩大而快速下降。

    第二种情况表示:从数学角度来说,转换成共模(CM)噪音的简正噪音在电路上对于所期望的电源电流来说是附加的,用电路阻抗相互作用之后,又会变成简正噪音电压,并加到AC电压波形上。这样,载荷设备必有一个AC输入电源免受噪音电压穿过整个音频频率段及以上,不仅仅在60HZ和120HZ。这暗示著要认真考虑整流程序之后的过滤系统的特殊设计,例如使用极低的系列电阻泄漏值的电解电容器和低泄漏的电感器。例如:线性电源会横穿过这个噪音电压进入到直流电源输出上,并会影响调节器电路运行的性能。它其至能穿过或环绕调节电路,并进入到直接与电子电路相连的终端直流电的母线结构中,当这些是模拟性能,且带有音频带通的低电平混频器或功放时,就会成为相当头疼的问题。注意:使用一般的SMPS时,这就不会是个大难题,因为舞台之间的转换变压器能为舞台提供足够量的衰减,并把噪音排除到电路之外,比如调节电路。

    新方法

    AC电源系统接线与接地的最新方法是用一个120伏交流中心抽头的AC系统提供单相AC电源,并建立分支电路系统,即将所有的绝缘体对称地接在地上。接地的额定AC电压必须是原来的一半,例如,原来为120V有效值时,现在只有60V有效值。这种AC系统及其接线、接地要求会在NEC第530条中引出影、视摄像棚及类似场所,G部分;60伏接地的各个分支系统。使用固定接地法(SG)中新的AC系统接地法的常用接线设计所示;绝缘分离接地法(IG)的设计所示。NEC内部用于60伏交流电接电系统的操作部分为530—70,一般描述为:使用分支电流为120伏的、单相的、3线的、并带有各为60伏的两个非接地绝缘体和一个接地绝缘体的系统应月达到为A—V产品或其它感性电器设备减少有害噪音的目的,并且其使用只限制在电器设备中,都符合530—71到530—73部分的全部要求。相关的NEG各部分的全部文字都己在“NEC经销商密码”中给出了。新要求需要在用于新的AC系统接地的插座或分支电路开关闸上附加接地故障中断(GFl)装置。

    当使用新的120/60伏交流电系统时会出现三大重要变化。

    第一:如果是一个标准的电路形式时,热绝缘导体上的接地电压是原来的一半,电子磁场会成比例地下降至接地电平。

    第二,接地系统全都是对称的,这在接地系统中限制了共模噪音电流转换成简正电流的能力,因此也限制了电路上的简正噪音电压。这一类降低了噪音穿过设备电源到达后续电路的能力。

    第三,NEC要求为120/60伏交流电系统只提供支持装配有特殊连接设定的电器设备。这可以防止电器设备大量干扰共用同一个AC系统和分支电路连线的其它设备。记住:当使用建筑内的与普通AC系统完全隔离的AC系统时,从无电源角度考虑还是很可靠的,因为装有压缩机的电器设备现在用在了专用的120/60伏交流电系统上,但灯光、马达等载荷与此不一样,它们在启动和故障情况下会引起支电路或进给装置开关闸干扰断路,不是简单地连接在辅助转换器、进给装置和分支电路系统上。

    如何做?

    最佳效果就是把完全分离的转换器、辅助过强电流利打开装置、进给装置及分支电路全都安装到新的120/60伏AC电平上,作为己安装设备,这符合NEC使用系统的要求。这是独立于建筑内其它各系统的唯一AC系统,它需要通过地极导体(GEC)把AC系统接到普通建筑地极使用的NEC地极接地上。

    请注意:在整个12D/60伏交流电系统的使用操作过程中会存在一个小故障,包括那些不需严格训练就能进入的位置。根据NEC的规定,当120/60伏交流电系统用在普通区域时,需要进行单独设置和确认。

    关于单独设置的问题有2个要求:第一,要拥有特别的插座和插头,经销商处未必会有存货;第二,必须通过切断缆线上现有120VAC插头,并换一个新的来改善所列产品的安全问题。而第二个要求又带来了新问题:由于110—2部分、认可及110—3、测试、确认、安装、使用设备;(b)段落、安装和使用等因素的组合影响而必须再操作另一个NEC。例如:已列出或标明的设备但却没有给出有效期限的不能改善。这样使设备不再属于所列出或标明的状态下,并使己确认的的两个部分都可能出现问题。唯一的解决办法是获得电子安全检测权,允许改善设备的安全与操作的测定问题。

    如果在这程序还没有完成之前,又发生了火灾或电击事件,展览会场将有律师现场签署以证明所有电平改良过程都是可章的oNEC在这部分需要略做变化以证明已列出或标明的设备可以用于改良过的标准NEMA—5—15或。20型插座,且又不会失去NEC的列表、标签或其它优点。

    控制嗡鸣及噪音的接地

    当电器设备全部安装在一间房子里时,如音、影编辑室里的设备,一般都会有好几个安装支架,还有若干信号电平缆线。这种安装方式总会涉及到嗡鸣及噪音的问题,且都是以共模(CM)开始的。

    当脉冲干扰计时或相关的逻辑元件的设置与重覆设置的操作时,设备接地系统中的共模电流和电压会引起一些数码电器设备的操作问题。一旦被电路阻抗的不稳定性转化成简正电流或电压时,它会自动模拟所需要的信号,并直接影响控制操作和音、视频信号。

    划分为噪音的共模电流和电压是问题的主要症结所在,一般指通过设备接地法来破坏NEC或采用黏合接地法所制造的电器安全问题。案例之一是使用单点接地法,此方法用于模拟电器时,难以预言其作用;在数字设备中又一无用处,是真正的用于所属设备的防电击接地设计,当以分类形式做补充时会破坏NEC设备和AC电源接地系统。

    然而,处理这些问题也确实存在真正的有效措施,并能保证AC电源系统及设备接地的安全。该措施称为信号参数网(SRG),包括缆线终端屏蔽所用的AC电源和信号电平脉动保护器。

   下面从SRG开始来逐一介绍。

    信号参数网

    一般认为。如果电器设备的接地都能埋在地平面以下。那么就解决了穿过最宽频率波段的接地问题。困难在于地平面一般都很难再附加物体,而且实际连接的成本又很高。可是,如果用网格代替地平面,不仅会降低高效操作频率限制,还能把地平面的优点尽可能的全部发挥出来。记住:从地质学角度来说。网格其实就是有孔的地平面。但在网格的实际安装中,地平面上的小孔不会成为麻烦。因为推介的SRG的实用设计方案从DC到25MHz。30MHz之间都十分有效。这是很成功的宽带接地法,在穿过各种类型的模拟和数码逻辑商业影音器材所需要的全部波段频率时最为有效。

    普通的SRG包括一系列的光铜片导体,其间相距一至两英尺,组合起来就覆盖了电器设备安装的整个地面。SRG一般安装在地板上,所有设备都通过连地垫圈带跨接在一起。所有电器导管、设备接地及室内使用的独立转换器(IT)都连接在SR9上,使之成为所有电器共有的接地参数。这里说所有电器,是因为单独连接法问题很多,包括电器安全问题,早已废弃不用了。(辅助元件的中性终端,金属外壳或箱体及绿色连线都在转换器内连在一起。这些元件的连接点又从地下跳接到SRG上,独立的转换器一般都直接放在SRG上部,而不是进行远距离安装)。

    典型构造

    一般而言,SRG的构造是指使用孔状地板(计算机房常用的地板),并在其底部连接SRG、电器电源和信号接线。地下电位器常用于调节空气,即HVAC处理电源冷却室内空气。

    孔状地板安装方式可以把SRG直接安装在辅助地板的上部,或用SRG线式夹持器悬在地板支架上部的帽沿上。两种方式效果都不错,材料常选用AWG#36光铜丝或0.1英寸(2.54mm)厚、2.O英时(50.8mm)宽的铜带。分频器连接点在2x2英尺(61X61cm)处,但有时会做得稍大或稍小些,其差异不易被察觉。

    无论有无铺地毡,SRG结构都使用扁铜金簿片。该簿片约O.030英时(O.762mm)厚,2英尺(61x61cm)宽,可以把各个分频器一一焊接起来。这种SRG能直接用于地板表层或铺上抗静电地毡。(你的电器房间也使用了这种地毡,是吧?)切入地毡中的T形插槽可以命名接地铜带或跳接线穿过地毡,并焊接到地下的SRG金薄片上,之后再把地毡缘朝下折起。

    脉冲保护

    从物理学的破坏角度来说,电器设备最大的威胁来自闪电引起的电压忽变现象,通常称为脉冲。尽管脉冲与电器安装的地理位置有关,但它的确是全美国电器普遍存在的一大威胁。要想知道这威胁究竟有多大,请您参考ANSI/NFPA780,1992国际闪电保护法规。

    对于建筑内的电器来说,直接电击建筑或输入AC电源导体不足以产生破坏性脉冲电流或电压,而头顶或附近的云团相撞倒常常会具有破坏性。因为许多普通安装都包括遍布设备的各个连接线路,有足够的机会产生闪电电流来破坏与之藕合的近场系统。这既是不可避免的电子场现象(藕合电容),也是磁场应感现象。但这些现象可以通过适当的接地、连接、屏蔽和脉冲保护技术等方法进行缓解。

    脉冲可以藕合到建筑接线系统和电子载荷设备的各种控制或信号处理缆线上。藕合的脉冲量是与连线封闭区脉冲量成比例的。封闭区面积越大,那么闪电释的脉冲电流和电压也会随之增大。

    从受害设备的角度来看,脉冲威胁主要来自AC电源输入及信号或控制缆线接口这两处。因此,从导体接口来的脉冲电流进入到受害设备中,又从另一端出来并又进到导体上。所以受害设备看上去是处在已与脉冲藕合的循环回路的中间。这就可以说明为什么只在一个接口处增加保护并不能保护设备免受闪电的破坏。

    别忘了,随著计算机应用的增加,控制或信号接口一般都使用计算机工业标准规定。注意:除非问题的出现是由于安装了某些特殊的接面插孔卡,这种卡采用的不是标准信号规定。

    恰当的脉冲保护既需要把脉冲保护设施装在电器设备上,也需要把它装在AC电源和控制或信号缆线接口上。这种方法常常在AC电源输入口上以金属氧化物变阻器为基础的保护形式。信号电平接口可以用特别设计的保护电路把TrallZprbs煤气管道、系列电阻或阻抗以及普通的电抗线圈结合起来,并与AC电源接口的保护性能相配合。例如,RS-232数字信号接口就需要一个为RS—232特别设计的脉冲保护器,且与经过性能检测的AC电源接口脉冲保护器同时使用,不能用其它东西代替,否则会损坏信号接口。最好的保护措施是把AC电源和信号保护器同时安装到或通过地线接到受保护的电器的金属外壳或逢体上。多数情况下,安装有机架的金属电器都能达到此要求,而且这种方法对于若干组合电器来说更为必要。

    脉冲保护器单元一般商用于工业标准的信号规定,但不适合专用的信号规定。所以特别应用需要特别设计。建筑内的AG电源系统必须采用脉冲保护,才以保证到达AG电源电路上的电子载荷设备的脉)中电平降到最低点上。电子载荷设备提供的保护不能对高能陈)中起到完全保护的作用。但能较好地保护低电平脉冲。利用现有的方式在相同的包装的受害设备电平中不能提供高刻痕性能和高能量电平控制性能。

    建议实例是从建筑内的SEQ开始的,在导体上安装一个叫做辅助闪电保护器(避雷器)的装置。SEQ的金属外框或箱体必须做为脉冲电流的参照点。一般情况下,建证实例是把保护器同AC电容器平行连接到每一条接地连线上去。这通常是指波前附加电容器有时做为总体保护器的一部分内置于电器中。大多数这样的保护器都适用于2600VAC系统,并使用单相或三相插头。

    在分支电路上位于SEQ和受损电器载荷设备之间的挡板与开关板之间有一个脉冲保护器,建议实例鼓励使用与之相似的脉冲保护器。每一种情况下,保护器都用在线路和设备接地之间的分流器上,如开关板或挡板的金属外壳或箱体上。设备接口保护之前的脉冲保护电平用在分支电路的后部。建议实例就是安装脉冲保护插座,或把保护器/避雷器先插入普通的插座中,然后再把受损电器载荷设备也插入其中。所有这些措施会连续分流并依次衰减从电源分配系统到达SEQ的脉)中电平,使之降到辅助保护器可以应用的程度。剩下的更低电平就就由特制设施和辅助保护器清除掉,这个辅助保护器用在AC电源通向电器载荷设备的出口处,同该设备的信号接口保护联合使用。

    缆线屏蔽终端

    在模拟电路和低频信号处理中,有一条金科玉律,那就是只在一端连接屏蔽。但由于电路高频特性的缘故,这不做为数字信号电路的建议实例。如果用屏蔽来衰减如闪电造成的内场藕合干扰的话,这也不是模拟电路的建议实例。

    在数字电路中,则要求将缆线屏蔽的两端都接地以获得内场保护,并保留缆线上高频信号的一致性。不必担心与缆线上数字信号相连的缆线屏蔽电流,因为在相关的电频上,两路电流分别运行在屏蔽的内、外表面上,几乎没有任何重选。这既是电磁场的功能,也是趋肤效应的功能。实际上,大多数数字信号缆线,如同轴电缆,在沿路上都有多点接地屏蔽,且不会有副面影响,是经过改进的极好的闪电保护措施。

    电话公司在用户的中转站或室内都装有接地缆线屏蔽,这就是按NEC条规安装的闪电避雷装置。

    电源质量

    在电话缆线屏蔽内使用的是一对相互缠线的装置,每一个都得到与线、线或线、地或机架相连的脉冲保护装置(SPD)的保护。独立接地屏蔽的一端只需使用一个几微拉的电容器就可以处理掉不需要的、由共模电流引起的缆线屏蔽电流。

    这阻止了DC和大多数音频(包括AC电源系统谐波),但却允许高频脉)中电流轻易通过。结果,屏蔽措施所起的作用就象衰减内场藕合的噪音和脉冲电流一样,但却不受来自电路两端接地电位上的、与DC和DC电流系统相关的共模电流的影响。

    屏蔽电流的各种问题还可以通过许多其它公认的技术来处理,如在屏蔽和接地之间使用Tranzorbs,在缆线终端使用opto-coUpLers,在缆线上使用共模电抗线圈或信号分离转换器。

    最后一点,如果只能在缆线的一端装接地屏蔽,那么就把缆线置于两端接地的金属管道之内,即可获得两端都接地的屏蔽效果(如内场保护器)。这一实例产生了两级屏蔽系统,其设计也大大提高了电子场的电路屏蔽功能。在这种方法中使用的电路或通道类型包括电子金属管(EMT),中介金属管(IMC)和支架金属管(RMC)等依次朝上安装的顺序。

    注意:在衰减共模噪音电流方面,电镀金属管要比铅管更有市场。

    数字逻辑和以SMPS为基础的电器正在或已经代替了模拟电路电器。新式电器设计有很多优点,但是比较容易产生能到达AC电源输出接地系和用于连接元件与系统的附加信号电平缆线的电子噪音。新、旧电器的设计都容易损坏闪电产生的脉冲电流和电压的影响,这些电流与电压可以转移到电器的AC电源输入接线、信号缆线和所使用的接地系统上。

    如果明白AC电源问题是怎样影响电子载荷设备的,那么就能决定自己究竟需要哪一种电源调节设备。CBEMA曲线的开发大大有助于调节设备的发展,不仅是对于原来的模拟电器,还是新式的数字逻辑电器来说,都是如此。

    当使用新式数字电器时,必须淘汰旧式电器的接地连接、屏蔽的种种方法。这也就是说:严格遵守NEC规定;不使用独立的地面接地电极连接;取消单点接地系统,因为必须使用宽带信号参数网;避免一端信号缆线屏蔽接地,因为数字信号要求两端同时接地;特别注意:若当地常有闪电发生,则要给新式电器的AC电源和信号电路上提供恰当的脉冲保护设备。只要按本指南认真操作,可以保证电器的接地系统安然无羔。


相关文章
热点关注
随机推荐
栏目列表

关于本站 | 会员服务 | 隐私保护 | 法律声明 | 站点地图 | RSS订阅 | 友情链接

免责声明:凡本站注明来源为xx所属媒体的作品,均转载自其它媒体转载目的在于传递更多信息,并不代表本站赞同其观点和对其真实性负责